Ryan. 21, Rhode Island, Aspiring Artist, Science, Astronomy, Tattoos, Animals, Meditation, Music. I'm just doing what makes me "me". Another aggravated optimist and a night wolf.

 

Closing Your Eyes Help You Remember Things

psych2go:

According to this article, it does a very good job explaining why closing your eyes helps you remember things better. It says that closing your eyes prevents you from distractions that occupy your visual senses. It seems that your brain has a limited capacity when it comes to processing…

science-junkie:

How Information Theory Could Hold the Key to Quantifying Nature
John Harte, a professor of ecology at the University of California, Berkeley,has developed what he calls the maximum entropy (MaxEnt) theory of ecology, which may offer a solution to a long-standing problem in ecology: how to calculate the total number of species in an ecosystem, as well as other important numbers, based on extremely limited information — which is all that ecologists, no matter how many years they spend in the field, ever have. […] He and his colleagues will soon publish the results of a study that estimates the number of insect and tree species living in a tropical forest in Panama. The paper will also suggest how MaxEnt could give species estimates in the Amazon, a swath of more than 2 million square miles of land that is notoriously difficult to survey.If the MaxEnt theory of ecology can give good estimates in a wide variety of scenarios, it could help answer the many questions that revolve around how species are spread across the landscape, such as how many would be lost if a forest were cleared, how to design wildlife preserves that keep species intact, or how many rarely seen species might be hiding in a given area. Perhaps more importantly, the theory hints at a unified way of thinking about ecology — as a system that can be described with just a few variables, with all the complexity of life built on top.
Read the article @WIRED

science-junkie:

How Information Theory Could Hold the Key to Quantifying Nature

John Harte, a professor of ecology at the University of California, Berkeley,has developed what he calls the maximum entropy (MaxEnt) theory of ecology, which may offer a solution to a long-standing problem in ecology: how to calculate the total number of species in an ecosystem, as well as other important numbers, based on extremely limited information — which is all that ecologists, no matter how many years they spend in the field, ever have. […] He and his colleagues will soon publish the results of a study that estimates the number of insect and tree species living in a tropical forest in Panama. The paper will also suggest how MaxEnt could give species estimates in the Amazon, a swath of more than 2 million square miles of land that is notoriously difficult to survey.

If the MaxEnt theory of ecology can give good estimates in a wide variety of scenarios, it could help answer the many questions that revolve around how species are spread across the landscape, such as how many would be lost if a forest were cleared, how to design wildlife preserves that keep species intact, or how many rarely seen species might be hiding in a given area. Perhaps more importantly, the theory hints at a unified way of thinking about ecology — as a system that can be described with just a few variables, with all the complexity of life built on top.

Read the article @WIRED

fuckoffnemo:

daedrickitten:

sunnyinwisconsin:

colossaltitan:

calypso53:

one of my favorite things about hiking is when i come across a strange structure deep in the woods and am left to wonder how and why and when





that’s actually really creepy





(via TumbleOn)

fuckoffnemo:

daedrickitten:

sunnyinwisconsin:

colossaltitan:

calypso53:

one of my favorite things about hiking is when i come across a strange structure deep in the woods and am left to wonder how and why and when

that’s actually really creepy
(via TumbleOn)

(Source: deadlords)

distant-traveller:

Jets and explosions in NGC 7793

This new image from the NASA/ESA Hubble Space Telescope shows NGC 7793, a spiral galaxy in the constellation of Sculptor some 13 million light-years away from Earth. NGC 7793 is one of the brightest galaxies in the Sculptor Group, and one of the closest groups of galaxies to the Local Group — the group of galaxies containing our galaxy, the Milky Way and the Magellanic Clouds.
The image shows NGC 7793’s spiral arms and small central bulge. Unlike some other spirals, NGC 7793 doesn’t have a very pronounced spiral structure, and its shape is further muddled by the mottled pattern of dark dust that stretches across the frame. The occasional burst of bright pink can be seen in the galaxy, highlighting stellar nurseries containing newly-forming baby stars.
Although it may look serene and beautiful from our perspective, this galaxy is actually a very dramatic and violent place. Astronomers have discovered a powerful microquasar within NGC 7793 — a system containing a black hole actively feeding on material from a companion star. While many full-sized quasars are known at the cores of other galaxies, it is unusual to find a quasar in a galaxy’s disc rather than at its centre.
Micro-quasars are almost like scale models — they allow astronomers to study quasars in detail. As material falls inwards towards this black hole, it creates a swirling disc around it. Some of the infalling gas is propelled violently outwards at extremely high speeds, creating jets streaking out into space in opposite directions. In the case of NGC 7793, these jets are incredibly powerful, and are in the process of creating an expanding bubble of hot gas some 1000 light-years across.

Image credit: ESA/Hubble & NASA

distant-traveller:

Jets and explosions in NGC 7793

This new image from the NASA/ESA Hubble Space Telescope shows NGC 7793, a spiral galaxy in the constellation of Sculptor some 13 million light-years away from Earth. NGC 7793 is one of the brightest galaxies in the Sculptor Group, and one of the closest groups of galaxies to the Local Group — the group of galaxies containing our galaxy, the Milky Way and the Magellanic Clouds.

The image shows NGC 7793’s spiral arms and small central bulge. Unlike some other spirals, NGC 7793 doesn’t have a very pronounced spiral structure, and its shape is further muddled by the mottled pattern of dark dust that stretches across the frame. The occasional burst of bright pink can be seen in the galaxy, highlighting stellar nurseries containing newly-forming baby stars.

Although it may look serene and beautiful from our perspective, this galaxy is actually a very dramatic and violent place. Astronomers have discovered a powerful microquasar within NGC 7793 — a system containing a black hole actively feeding on material from a companion star. While many full-sized quasars are known at the cores of other galaxies, it is unusual to find a quasar in a galaxy’s disc rather than at its centre.

Micro-quasars are almost like scale models — they allow astronomers to study quasars in detail. As material falls inwards towards this black hole, it creates a swirling disc around it. Some of the infalling gas is propelled violently outwards at extremely high speeds, creating jets streaking out into space in opposite directions. In the case of NGC 7793, these jets are incredibly powerful, and are in the process of creating an expanding bubble of hot gas some 1000 light-years across.

Image credit: ESA/Hubble & NASA